
Getting & Building the
netCDF-C libraries
NetCDF for New Users
2012

Friday, October 26, 12

Overview
This talk will cover getting and building the
netCDF-C library and utilities.

We will focus on building in a Unix-like
environment (Linux or Cygwin/MSYS for
Windows).

We will discuss two different build systems,
‘autotools’ and ‘CMake’.

Friday, October 26, 12

Getting netCDF-C
Latest Stable release (4.2.1.1):

http://www.unidata.ucar.edu/downloads/netcdf/

Latest Developer Snapshot:
$	 svn	 co	 http://svn.unidata.ucar.edu/repos/netcdf/trunk	

Friday, October 26, 12

http://www.unidata.ucar.edu/downloads/netcdf/index.jsp
http://www.unidata.ucar.edu/downloads/netcdf/index.jsp
http://svn.unidata.ucar.edu/repos/netcdf/trunk
http://svn.unidata.ucar.edu/repos/netcdf/trunk

Supported Build Systems
netCDF-C can be built using two different build
systems:

Autotools

CMake

Friday, October 26, 12

Autotools
Autotools-based build chain:

Provides support for Unix, Linux through the use
of make-based builds.

Typical ‘./configure; make; make install’ process.

Provides very limited support for Windows
(Cygwin & MSYS).

Friday, October 26, 12

CMake
CMake-based build chain:

Provides support for the same systems as the
Autotools-based build chain, plus Visual Studio
builds for windows-native netCDF-C.

Provides additional tools for unit and regression
testing.

Friday, October 26, 12

Build Process Overview
1.Configuration: Before compiling, the software is

configured based on the desired options.

2.Building: Once configuration is complete, the
libraries are compiled.

3.Testing: Post-build, it is possible to run tests to
ensure the functionality of the netCDF-C libraries.

4. Installation: If all the tests pass, the libraries can
be installed in the location specified during the
‘Configuration’ step.

Friday, October 26, 12

Configuration
Common Configuration Options:

netCDF-4 support. This
requires that the HDF5 and zlib
libraries are installed on the
system.

If HDF5 was built with SZip
support, the szip libraries
(included with HDF5) will
also need to be linked
against.

DAP support. This requires that
the libcurl libraries are installed
on the system.

NetCDF

HDF5

ZLib SZip

DAP
Support

NetCDF-4
Support

libcurl

Friday, October 26, 12

Configuration

AUTOTOOLS

$	 cd	 netcdf/
$./configure	 -‐-‐prefix=[PREFIX]

CMAKE

$	 cd	 netcdf/
$	 mkdir	 build
$	 cd	 build/
$	 cmake	 ..	 -‐D”CMAKE_INSTALL_PREFIX=[PREFIX]”

Friday, October 26, 12

Configuration
The autotools-based toolchain creates Makefiles;
post-configuration, netCDF-C is built by issuing
the ‘make’ command.

The CMake-based toolchain can create a variety
of build types. NetCDF-C is built using the
specific tool associated with the build type, or by
issuing the ‘cmake --build .’ command.

Friday, October 26, 12

Building
Build using the ‘make’ command.

What is generated during the build step?

netCDF-C Library

netCDF-C Utilities (nccopy, ncdump, ncgen,
ncgen3, nc-config).

Tests may or may not be built during this step.

Friday, October 26, 12

Testing
netCDF-C comes with a number of tests to ensure
that the library is functional after compilation.

Depending on the platform and functionality specified
during configuration, different tests will be executed.

Invoking the tests:

Autotools: ‘make check’

CMake: ‘make test’

Friday, October 26, 12

Installing
Installing is as easy as
running ‘make install’ with
autotools or ‘cmake --
build . --target install’ with
CMake. The following files
will be installed:

The netCDF-C utilities:
nccopy, ncdump, ncgen,
ncgen3, nc-config

The netCDF-C library.

The netcdf.h include file.

The netcdf pkconfig file.

Related man pages.

[PREFIX]/
(/usr/local)

bin/

include/

lib/

share/

nc-config

nccopy

ncdump

ncgen

ncgen3

netcdf.h

libnetcdf.7.dylib

libnetcdf.la

libnetcdf.dylib

libnetcdf.a

pkgconfig/ netcdf.pc

man/
man3/

man1/

nccopy.1

ncdump.1

ncgen.1

ncgen3.1

netcdf.3

Legend

directories/

files

autotools
only

autotools
and cmake

Friday, October 26, 12

Non-Standard
Dependency Locations
What if dependencies are in a non-standard location?

autotools: Specify using ‘CPPFLAGS’ and
‘LDFLAGS’ when configuring.

$	 CPPFLAGS=”-‐I/hdf5/include	 -‐I/curl/include”	 \
	 	 LDFLAGS=”-‐L/hdf5/lib	 -‐L/curl/lib”	 ./configure

AUTOTOOLS EXAMPLE

Friday, October 26, 12

Non-Standard
Dependency Locations
What if dependencies are in a non-standard location?

cmake: Specify using dependency-specific flags
when configuring.

$
$
$	 cmake	 ..	 -‐D”HDF5_DIR=/hdf5/”	 \

-‐D”CURL_LIBRARY=/curl/curl.a”	 \	
-‐D”CURL_INCLUDE_DIR=/curl/include”	

CMAKE EXAMPLE

Alternatively, the CMake GUI can be used.

Friday, October 26, 12

Non-Standard
Dependency Locations

Friday, October 26, 12

Summary
We have discussed

Getting netCDF-C library source code.

Configuring the source code.

Building the netCDF-C library.

Checking the build for errors.

Installing the libraries.

Friday, October 26, 12

